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Abstract
We show that shape invariance appears when a quantum mechanical model
is invariant under a centrally extended superalgebra endowed with an
additional symmetry generator, which we dub the shift operator. The familiar
mathematical and physical results of shape invariance then arise from the BPS
structure associated with this shift operator. The shift operator also ensures that
there is a one-to-one correspondence between the energy levels of such a model
and the energies of the BPS-saturating states. These findings thus provide a
more comprehensive algebraic setting for understanding shape invariance.

PACS numbers: 03.65.Fd, 11.30.Pb

1. Introduction

Shape invariance [1] provides perhaps the most illuminating approach to exact solubility in
quantum mechanics. Building on the properties of supersymmetric quantum mechanics [2],
shape invariance offers an elegant and concise algorithm for generating the stationary states and
energy eigenvalues in exactly solvable models. The understanding of this property, however,
has in many ways remained incomplete. Why does it appear when it does? Why are some
models shape invariant and others not?

In this paper, we identify the deeper structure that produces shape invariance. Shape
invariance arises when a quantum mechanical model is invariant under both a supersymmetry
algebra with a central charge and an additional symmetry operator, analogous to a LaPlace–
Runge–Lenz vector [3]. The results of shape invariance can then be understood as arising from
the BPS-like [4] phenomena associated with this additional operator, with the added feature
that every state in the theory is degenerate with, and easily obtainable from, one of the BPS
states of the model.

This larger algebra suggests that shape invariance may well have a much broader role to
play in physics, since centrally extended superalgebras have come to be of great importance
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in field theory and string theory. In addition, the appearance of BPS bounds and equations
indicates the presence of an underlying topological structure. We thus expect our work to
provide a framework for identifying the appearance of shape invariance and its associated
properties in other settings of significance.

2. Shape invariance reviewed

Consider non-relativistic quantum mechanics in one spatial dimension. When the potential
energy is adjusted so that the ground state energy is zero, the Hamiltonian can be written in a
factorized form

H1(g) = A†(g)A(g), (2.1)

where g denotes the real parameter(s) that determine the potential, and A(g) is a first-
order differential operator. This Hamiltonian is positive semi-definite, and its ground state
wavefunction is the state annihilated by A(g).

Reversing the order of A and A† in (2.1) produces an affiliated ‘partner’ Hamiltonian

H2 = A(g)A†(g). (2.2)

The only difference between the spectra of H1 and H2 is that H1 has a zero-energy state and
H2 in general does not; otherwise, their spectra are identical. To see that the positive energy
spectra of these two Hamiltonians are degenerate, observe that H2A = AH1. Consequently,
if H1ψ = Eψ for a wavefunction ψ not annihilated by A, then Aψ is an eigenstate of H2

satisfying H2(Aψ) = E(Aψ). Likewise, A† maps eigenstates of H2 to degenerate eigenstates
of H1.

Supersymmetry provides a natural context for understanding the relationships between
the states of H1 and those of H2.1 If one combines these two operators into

H =
(

H1 0
0 H2

)
, (2.3)

this matrix Hamiltonian can be obtained from the anticommutator H = {Q,Q†}, where Q
and Q† are supercharges, given by

Q =
(

0 0
A 0

)
, Q† =

(
0 A†

0 0

)
. (2.4)

Both Q and Q† commute with H. The operator � = σ3 has eigenvalues ±1 that distinguish the
H1 and H2 sectors. Since {Q,�} = {Q†, �} = 0, the supercharges Q and Q† map states from
one �-sector into the degenerate states of the other �-sector. The operator � thus plays a role
in supersymmetric quantum mechanics analogous to the role played by the operator (−1)F in
supersymmetric field theories [5].

Shape invariance is a property that arises when there is an additional relationship between
the partner Hamiltonians H1 and H2. Suppose that these Hamiltonians are linked by the
condition

A(g1)A
†(g1) = A†(g2)A(g2) + c(g2), (2.5)

where the real parameters g1 and g2 are related by a mapping f : g1 → g2, and c(g) is a
c-number that depends on the parameter(s) of the Hamiltonian. When this condition holds,
the Hamiltonian H1 is said to be shape invariant.

1 The reader familiar with supersymmetry will note that we are, throughout this paper, working in the context in
which the ground state is supersymmetrically invariant, and thus supersymmetry is not spontaneously broken.
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Figure 1. A generic energy spectrum for a collection of four Hamiltonians related to each other
by shape invariance. The Hamiltonians are provided by the sequence (2.6). Note the degeneracies
that exist across all the sectors.

One can readily determine the states and energy levels of a shape invariant Hamiltonian.
Denote the energy levels of H1 by En, and those of H2 by Ẽn, where n = 1, 2, 3, . . . .

(The label n gives the levels in order of increasing energy, with n = 1 corresponding to the
ground state.) Then (2.5) implies that Ẽn(g1) = En(g2)+c(g2), while supersymmetry implies
En+1(g1) = Ẽn(g1). Supersymmetry also provides a map between the level n wavefunction
of H1 and the level n − 1 wavefunction of H2. Altogether, these results enable one to solve
for the spectrum of a shape invariant Hamiltonian.

Thus, for example, the ground state of H1 is the function ψ1(x; g1) annihilated by A(g1).
Because of (2.5), the ground state of H2 is thus given by ψ1(x; g2), which is annihilated
by A(g2) and has energy c(g2). This implies in turn that the first excited state of H1 is
A†(g1)ψ1(x; g2) and that this state also has energy c(g2).

The relationship (2.5) can be applied iteratively, producing a sequence of Hamiltonians
of the form

Hk = A†(gk)A(gk) + c(gk) + · · · + c(g2), (2.6)

where the parameter gj+1 = f (gj ). Because

A†(gk)Hk+1 = HkA
†(gk), (2.7)

the process described in the previous paragraph can be iterated to obtain all the energy levels
and wavefunctions of H1. The ground state wavefunction of Hk is ψ1(x; gk), with energy
c(g2) + · · · + c(gk). Applying (2.7) repeatedly, one determines then that the energy levels of
the original Hamiltonian H1(g1) are

En(g1) =
n∑

j=1

c(gj ), (2.8)

where we have defined c(g1) = 0; the corresponding stationary states are given by

ψn(x; g1) = A†(g1)A
†(g2) · · · A†(gn−1)ψ1(x; gn). (2.9)

Because of the mapping f , any parameter gj in expressions (2.8) and (2.9) can be re-expressed
in terms of g1. The energy of the nth stationary state of H1 is the same as the energy of the
ground state of Hn.

Figure 1 presents an illustration of the set of spectra that arise when we group together a
set of Hamiltonians related by shape invariance. One notes the pervasive degeneracies across
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sectors, which arise due to the shape invariance relation (2.5). For a concrete realization
of a shape invariant theory, we refer the reader to the appendix, where we present a brief
example.

Clearly, shape invariance is a useful tool for analysing exactly solvable quantum
mechanical systems. Why this structure should appear in some Hamiltonians and not others,
however, is not clear, although given the intricacy and elegance of this structure, it would seem
that there ought to be an underlying principle responsible for its appearance. As a first clue to
understanding the origins of shape invariance, we note the following. While all the eigenstates
of the Hamiltonians Hk generated according to (2.6) satisfy a time-independent Schrödinger
equation, which is second order, the ground state of each of these sectors satisfies a simpler,
first-order equation, namely A(gk)ψ1(x; gk) = 0. Such a scenario is familiar from field
theories in which there are BPS bounds. In such field theories, while the equations of motion
are generically second-order equations, the field configurations that saturate BPS bounds
satisfy first-order equations. We are thus led to consider the possibility that shape invariance is
a manifestation of BPS saturation. Given the close association that has been uncovered in the
field theoretic context between BPS phenomena and supersymmetry algebras with a central
charge, it would therefore seem natural to look for a BPS interpretation of shape invariance by
considering supersymmetric quantum mechanics in which the superalgebra includes a central
charge. It is this endeavour to which we now turn.

3. Supersymmetry with a central charge

Our goal in this paper is to determine the algebraic underpinnings of shape invariance. As we
will show, supersymmetric quantum mechanics with non-vanishing central charge, while not
sufficient to produce shape invariance, is a key part of the framework we seek. For now, we
simply study quantum mechanics in which the superalgebra has non-vanishing central charge;
the connection of such centrally extended superalgebras to shape invariance will become
apparent in the subsequent section.

To develop supersymmetric quantum mechanics with a central charge, we first present
the corresponding centrally-extended superalgebra. For the purposes of this paper, only the
case of real central charge is relevant. The superalgebra in this case takes the form

{Q,Q†} = H

[H,Q] = [H,Q†] = 0 (3.10)

{Q,Q} = {Q†,Q†} = Z.

This algebra includes the supercharges Q and Q†, the real central charge Z and the
Hamiltonian H. When Z = 0, the second condition in (3.10) is automatic, but for nonzero
central charge, this condition must be specified independently. The above algebra implies
[Q,Z] = [Q†, Z] = 0, as well as H � |Z|.

We wish to realize this algebra in a quantum mechanical system. Our approach is
first to present an implementation of this algebra in a two-sector model, analogous to the
supersymmetric quantum mechanics described in the preceding section, and then to generalize
this construction to an arbitrary number of sectors.

To realize the algebra (3.10), we represent the supercharges as matrices

Q =
(−η 0

A η

)
, Q† =

(−η A†

0 η

)
, (3.11)
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where η is a real c-number. Then the Hamiltonian and central charge are determined by the
superalgebra to be, respectively,

H =
(

A†A + 2η2 0
0 AA† + 2η2

)
, Z =

(
2η2 0
0 2η2

)
. (3.12)

The operator � = σ3 commutes with the Hamiltonian, and thus its eigenvalues distinguish the
two sectors of the theory. Note that the central charge has only non-negative values in this
construction2.

It turns out that the operators that served as supercharges when there was no central
charge, namely

Q̃ =
(

0 0
A 0

)
, Q̃

† =
(

0 A†

0 0

)
, (3.13)

still have a role to play in the centrally extended case. One notes first that Q = Q̃ − η�, and
so one can write the Hamiltonian as

H = {Q̃, Q̃
†} + |Z|, (3.14)

since Z = {η�, η�}. This makes the bound H � |Z| manifest.
When there is non-vanishing central charge, {Q,�} �= 0, and so the supercharges do

not map states from one �-sector to the other �-sector. The operator Q̃, on the other hand,
not only commutes with the Hamiltonian and central charge, but also satisfies {Q̃, �} = 0.
Therefore, it is the operators Q̃ and Q̃

†
that map states from one �-sector to the other. Those

states for which H > |Z| are doublets under this operation, while those with H = |Z| are
singlets.

To construct a model with 2N sectors for arbitrary integer N, one can concatenate N
two-sector models. To construct the supercharges, for example, one places 2 × 2 blocks of the
form (3.11) along the diagonal of a 2N × 2N matrix. Upon calculating the Hamiltonian and
the central charge, this procedure yields a reducible representation of the centrally extended
superalgebra (3.10).

As an example, a four-sector model has supercharges

Q =




−η1 0
A1 η1

−η3 0
A3 η3


 , Q† =




−η1 A
†
1

0 η1

−η3 A
†
3

0 η3


 . (3.15)

The associated Hamiltonian H and central charge Z follow from (3.10), and are diagonal. Thus,
the spectrum divides into four sectors, which we number sequentially along the diagonal. One
notes that sectors 1 and 2 are degenerate, with energies bounded from below by 2η2

1, and
sectors 3 and 4 are degenerate, with energies bounded from below by 2η2

3. The only exceptions
to these degeneracies are that sectors 1 and 3 each have states that saturate their respective
energy bounds, while the even sectors do not. Each of the degenerate pairs of sectors we dub
a partnership. A typical spectrum for a four-sector model is given in figure 2.

Once again, it is not the supercharges that swap the degenerate states within each
partnership. Generalizing from the previous case, we see that the operators that swap

2 Using complex η in fact generates exactly the same Hamiltonians as using real η, with η2 replaced by |η|2. The
central charge becomes complex, picking up an overall phase, while the energy bound remains of the form H � |Z|.
As a way to refer to this more general setting, at some points in this paper we use the expression |Z|, even though
with our choices, Z has only non-negative values.



10402 M Faux and D Spector

energy

0

H1 H2 H3 H4

Figure 2. The energy spectrum of a four-sector model invariant under supersymmetry with a
central charge. Hj is the Hamiltonian for the j th sector. Note that there is no correlation between
the energy levels of the first partnership (sectors 1 and 2) and those of the second partnership
(sectors 3 and 4).

degenerate states within a partnership are concatenations of the corresponding operators of
the two-sector case; for the four-sector model, these operators are

Q̃ =




0 0
A1 0

0 0
A3 0


 , Q̃

† =




0 A
†
1

0 0
0 A

†
3

0 0


 . (3.16)

The generalization of this construction to the case of 2N -sectors exhibits the essential
features we have identified above. The spectrum divides into partnerships, consisting of an
odd sector and the subsequent even sector. If j is an odd integer, then sectors j and j + 1 are
bounded from below by a common constant η2

j . The odd sector has a state with energy η2
j

and the even sector does not, but otherwise these sectors have degenerate spectra. One can
also specify generalizations of Q̃, which are distinct from the supercharges, to provide the
mapping between the degenerate states that reside within each partnership.

Having constructed Hamiltonians invariant under a centrally extended superalgebra, we
now invoke such models in the next section, where they provide the basis for our analysis of
shape invariance.

4. The algebraic origins of shape invariance

The spectrum of energy levels in supersymmetric quantum mechanics with a central charge
has, in certain respects, a resemblance to the spectrum of energy levels that arises in the
presence of shape invariance. For example, comparing figures 1 and 2, each of which has a
spectrum that divides into four sectors, we notice the following similarities. The states in the
first sector (excepting the ground state) are degenerate with those of the second sector, just as
those of the third sector (excepting its lowest energy state) are degenerate with those of the
fourth sector. Furthermore, the lowest energy state of each odd sector satisfies a first-order
equation. The obvious generalizations of these statements hold in the case of 2N sectors.

However, the shape invariant case has two additional features, both of which suggest an
enhanced algebraic structure. First, the same degeneracy pattern that holds within a partnership
is present between the adjacent even and odd sectors of distinct partnerships. Second, as noted
previously, in the shape invariant case, the lowest energy state in every sector satisfies a
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Bogomol’nyi-like first-order equation, something which only holds in the odd sectors for the
simply supersymmetric case.

The extra degeneracies indicate the presence of a symmetry operator that not only maps
between degenerate levels within a partnership, but that also maps between levels from adjacent
sectors that lie in distinct partnerships. Finding this operator leads, in turn, to an explanation
of the Bogomol’nyi equations.

To approach this problem, we consider first the four-sector case, and then show that the
results so obtained apply to the case of arbitrarily many sectors, as is necessary if we are to
address shape invariance in general. Using (3.15), the four-sector Hamiltonian with centrally
extended supersymmetry can be written as

H =




A
†
1A1 + 2η2

1 0 0 0

0 A1A
†
1 + 2η2

1 0 0

0 0 A
†
3A3 + 2η2

3 0

0 0 0 A3A
†
3 + 2η2

3


 . (4.17)

The operator Q̃ from (3.16) explains the degeneracies within each partnership that arise from
the superalgebra; this suggests modifying Q̃ to include an entry that maps the second sector
to the third sector, and requiring that this new operator be conserved.

We therefore define the ‘shift operator’ S by

S ≡




0 0 0 0
A1 0 0 0
0 C 0 0
0 0 A3 0


 , (4.18)

and seek to determine when we can choose C such that [H, S] = 0. As we show below,
the shape invariant models correspond to the case that this is possible. To see this, first we
impose the requirement that [H, S] = 0, and find that this can be achieved when A

†
1A1 is

shape invariant, and two auxiliary conditions are met, namely that A3 and A1 are related by
a unitary transformation, and that η3 is related to η1 so that the energy levels line up suitably.
Appealingly, the shape invariance condition emerges from the condition that S be conserved.
We then observe that one can look at this result in reverse, concluding that whenever shape
invariance holds for a one-sector Hamiltonian A

†
1A1, this Hamiltonian can be embedded in

a centrally extended supersymmetric quantum theory with a conserved shift operator, by
defining A3 and η3 that meet the necessary conditions.

Using the matrix form of S (4.18), the requirement that H and S commute becomes

A
†
3A3C − CA1A

†
1 + 2

(
η2

3 − η2
1

)
C = 0. (4.19)

This condition suggests that there is a simple relation between A1 and A3. We therefore
suppose that there is a unitary transformation represented by an operator � such that

A3 = �†A1�. (4.20)

In order that we are able to make contact with shape invariance, we allow, and indeed expect,
the operator � to implement a transformation in parameter space, mapping the c-number
parameters of a model (such as g in (2.1)) to new values, and thus altering also the values of
expressions in the Hamiltonian (such as η2

1 and η2
3) that are functions of these parameters. For

an example of such an operator, the reader can consult the appendix, in particular (A.5).
The condition that A1 and A3 are unitarily related can be imposed on the commutativity

condition (4.19). Using a unitary operator U such that U 2 = �, the resultant equation can be
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written in the form

C̃Ã1Ã
†
1 − Ã

†
1Ã1C̃ = 2

(̃
η2

3 − η̃2
1

)
C̃, (4.21)

where, for simplicity of appearance, we have introduced Ã1 = A1U, C̃ = UC and
η̃j = UηjU

†. Our goal is to find an operator C̃ that will lead to a solution of (4.21).
The ansatz with which we have found success is to choose C̃ = Ã1 (that is, C = U †A1U ),
turning the conservation condition (4.21) into3{

Ã1,
[
Ã1, Ã

†
1

]} = 2
(̃
η2

3 − η̃2
1

)
Ã1. (4.22)

Thus, to achieve conservation of S, the left-hand side of (4.22) must be proportional to Ã1.
We note that this condition is satisfied if there is a c-number κ such that[

Ã1, Ã
†
1

] = κ. (4.23)

Note that this is just a compact rephrasing of the shape invariance condition (2.5). Combining
(4.23) with (4.22), one finds {κ, Ã1} = 2

(̃
η2

3 − η̃2
1

)
Ã1. Rewriting this in terms of the original

quantities, remembering that U does not commute with κ , this relationship takes the form

κ + U †κU = 2
(
η2

3 − η2
1

)
. (4.24)

When this condition and (4.23) hold, the requirement that S commute with H is satisfied.
It is useful to rephrase the above results in reverse. Suppose that A

†
1A1 is shape invariant.

Then A1 satisfies

A1A
†
1 − U †A

†
1A1U = κ, (4.25)

where κ is a c-number and U implements a shift in the parameter(s) of the theory, which
is precisely the statement (4.23). With this condition satisfied, it is possible to construct a
multiple sector model that has H1 = A

†
1A1 + 2η2

1 as the Hamiltonian in its first sector, and that
is invariant under both a centrally extended superalgebra and a shift operator S. To obtain this
multi-sector theory, one defines quantities A3 and η3, respectively, by

A3 = (U †)2A1(U)2

2η2
3 = 2η2

1 + κ + U †κU. (4.26)

The conserved shift operator takes the form

S =




0 0 0 0
A1 0 0 0
0 U †A1U 0 0

0 0 U †2
A1U

2 0


 , (4.27)

while the Hamiltonian for the second sector can be written as (U †A1U)†(U †A1U) + η2
1 + κ .

In this way, one sees that the shape invariant theories correspond to centrally extended
supersymmetric theories with a conserved shift operator.

It is now straightforward to generalize this construction from the four-sector case to a
model with an arbitrary number of sectors. Since, due to (4.25) and (4.27), the relationship
between sector j and sector j + 1 is implemented in the same way for each value of j

(and not just when the sectors j and j + 1 fall within a single partnership), the algebraic
structure found above can be readily extended to a theory with 2N sectors, where N is
an arbitrary integer. For notational compactness, it helps us to define the diagonal matrix
U = diag(1, U,U 2, U 3, . . . , U 2N−1) and the matrix, all of whose entries lie just below the

3 It is interesting to observe that the algebraic relation (4.22) arises also in the algebra of parabosonic systems, as
shown in [6], but it is not yet clear if there is a significance to this connection.
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diagonal, Ai,j = A1δi,j+1. Then in the 2N sector model, the shift operator (that is, the extra
conserved quantity) takes the form

S = UU†AU, (4.28)

and it is conserved provided A1A
†
1 − U †A

†
1A1U = κ , i.e., provided that A

†
1A1 is shape

invariant. Thus, shape invariance corresponds to the invariance of the multiple-sector
Hamiltonian under the action of the shift operator S.

It is worth noting that conservation of S plays a role here analogous to that played by
the LaPlace–Runge–Lenz vector in the hydrogen atom. In the hydrogen atom, spherical
symmetry dictates that the energy eigenvalues depend on a radial quantum number n and an
angular momentum quantum number �. The additional conservation law associated with the
LaPlace–Runge–Lenz vector ensures that states with the same n value but different � values
are in fact degenerate [3]. Likewise, when a model is invariant under a centrally extended
superalgebra, this algebra imposes no relation between the energy levels of the different
partnerships; it is conservation of the shift operator that aligns these partnerships to produce
the additional degeneracies that arise in the presence of shape invariance.

The example in the appendix shows briefly how the structure we have derived above
applies to a particular case.

5. Shape invariance, BPS and the shift operator

Having obtained the shape invariance condition from the algebra of centrally extended
supersymmetry enhanced by a shift operator, we now consider the further implications of
this algebra. For convenience, we again consider initially the four-sector model. In this case,
all states in the fourth sector are trivially annihilated by S. However, in the other three sectors,
something more interesting occurs.

Due to (4.17), (4.25) and (4.26), the Hamiltonian of the four-sector model is related to S
in an especially simple way. In particular,

H = S†S + B, (5.29)

where B is a diagonal matrix that, except in its final entry, consists entirely of c-numbers. One
readily determines that

B =




2η2
1 0 0 0

0 2η2
1 + κ 0 0

0 0 2η2
1 + κ + U †κU 0

0 0 0 H4


 . (5.30)

In the first three sectors, the energies are constrained by a Bogomol’nyi bound, Hk � (B)kk .
This bound is saturated only for a state annihilated by S; S is a first-order differential operator
and this annihilation condition then is the Bogomol’nyi equation for these BPS-saturating
states. These states are the ground states of the first three sectors.

If we consider the full four-sector theory, the identity S4 = 0 implies that a typical
multiplet of degenerate states consists of four states. The multiplets in which one of the states
from the first three sectors satisfies Sψ = 0 are shortened, however, with one, two and three
states, respectively. This is analogous to what occurs for BPS-saturating states when it is the
supercharge involved in the annihilation condition [7, 8].

Finally, because each of the first three states of the first sector has to be degenerate with
the Bogomol’nyi-saturating ground state of one of the first three sectors, the constants in B
represent not only the Bogomol’nyi bounds of the various sectors, but also the first three
energy eigenvalues of the original Hamiltonian.
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Of course, nothing is special about the four-sector model; we can easily extend these
results to a theory with an arbitrary number of sectors. In a model with 2N sectors, the BPS
structure still holds, with S defined as in (4.28), and

H = S†S + B

B = diag(b1, b2, . . . , b2N−1,H2n)

b1 = 2η2
1

bj+1 = bj + (U †)j−1κUj−1.

(5.31)

In the first 2N − 1 sectors, the ground state saturates a Bogomol’nyi bound H = B (that is,
has energy bj ), and this state is annihilated by the first-order differential operator S. Because
of the degeneracies produced by conservation of S, these Bogomol’nyi bound values are also
the energies of the first 2N − 1 states of H1. These 2N − 1 lowest energy states of H1 are
part of shortened S multiplets (since S2N = 0, multiplets of length 2N are the norm); the j th
energy level of H1 can be obtained by applying S† repeatedly to the Bogomol’nyi-saturating
ground state of the j th sector. While for any finite value of 2N , the BPS structure only applies
to the first 2N − 1 sectors and energy levels, this is not a fundamental limitation; as the whole
process can be iterated for arbitrarily large values of 2N , in fact all the energy levels of H1

(and, indeed, of the Hamiltonians with which it is associated via shape invariance) fit into this
algebraic framework.

This completes the analysis of the structure of shape invariance.

6. Summary and prospects

We have demonstrated that shape invariance is associated with a more comprehensive
invariance algebra: supersymmetry with a central charge, enhanced by the addition of a
shift operator S that maps among adjacent sectors of the supersymmetric model, even when
those sectors come from distinct partnerships. Most compellingly, there turns out to be a
natural BPS interpretation of shape invariance due to this structure. When the shift operator
is conserved, and shape invariance holds, the Hamiltonian can be written as H = S†S + B,
and so not only is H � B, but the states for which H = B are the states annihilated by S;
the equation Sψ = 0 is nothing but the Bogomol’nyi equation for this model. Finally, in a
result that exceeds conventional BPS results, because S plays a role analogous to a LaPlace–
Runge–Lenz vector, it imposes degeneracies between every pair of adjacent sectors, and thus
the eigenvalues of B are also the energy eigenvalues of the first sector, and the corresponding
states can be obtained by the action of S† on the BPS-saturating states.

The algebra we have described gives a natural framework for understanding the origins
of shape invariance. Still, it is a curious question as to whether these Bogomol’nyi bounds
can be given a natural topological explanation [8], with each sector in the shape invariant case
corresponding to a distinct topological sector. We have pursued some initial efforts in this
direction, by using a field theoretic approach to study supersymmetric quantum mechanics
with a central charge [9]. In the context of the sigma models we have studied in that language,
shape invariance amounts to a restriction on the target space geometry. Continued efforts
should show if there is additional significance to such a restriction, and whether there is a
natural way to interpret the rest of the algebraic structure described above in terms of features
of the target space. We believe such an approach has the potential to lead us to a topological
interpretation of the construction presented in this paper.
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Appendix

As an example of shape invariance, consider the Hamiltonian

H = − d2

dx2
+ b sech2(x). (A.1)

Setting

A = d

dx
+ g tanh(x), (A.2)

one obtains the paired Hamiltonians

H1(g) = A†A = − d2

dx2
− g(g + 1) sech2(x) + g2 (A.3)

and

H2(g) = AA† = − d2

dx2
− g(g − 1) sech2(x) + g2. (A.4)

Clearly, H2(g) = H1(g − 1) + (2g − 1), which is an explicit manifestation of the shape
invariance condition (2.5), recovered in our construction by (4.25).

To identify the necessary unitary transformation called for in our analysis, note that
U †f (g)U must yield f (g − 1). Such a shift is achieved by the operator

U = exp(∂/∂g). (A.5)

The parameter κ associated with this model is κ(g) = 2g −1. The interested reader can easily
apply the rest of our construction to this example.
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